Exercice 1 BTS, Groupement A, 2003

10 points

Partie A:

1. Dans cette question, on s'intéresse au cas où $\tau = 0,01$.

On a ici
$$\lambda = 500\tau = 5$$
. $P(X \le 1) = P(X = 0) + P(X = 1) = e^{-5} \frac{5^0}{0!} + e^{-5} \frac{5^1}{1!} \approx 0,04$.

La probabilité que le serveur reçoive au plus une requête au cours d'une durée τ de 0,01 s est environ 0,04.

$$P(X > n_0) = \sum_{k=n_0+1}^{+\infty} e^{-\lambda} \frac{\lambda^k}{k!}$$
. Or, pour $\lambda = 500\tau = 5$, on a, d'après la table donnant les

probabilités pour la loi de Poisson :

$$P(X \ge 14) = 0$$
,

$$P(X = 13) = 0,001,$$

$$P(X = 12) = 0,003,$$

$$P(X = 11) = 0,008,$$

$$P(X = 10) = 0.018,$$

$$P(X = 9) = 0,036,$$

On a donc P(X > 9) = 0.03 < 0.05 tandis que P(X > 8) = 0.086 > 0.5.

Ainsi, le plus petit entier recherché est $n_0 = 9$.

- 2. (a) $P(X>120)=P\left(\frac{X-100}{10}>2\right)$, où la variable aléatoire $\frac{X-100}{10}$ suit une loi normale centrée réduite. On trouve alors la probabilité recherchée dans la table de la loi normale : $P(X>120)=P\left(\frac{X-100}{10}>2\right)=1-\Pi(2)\simeq 1-0,9772=0,0228$
 - (b) $P(100 a \le X \le 100 + a) = P\left(\frac{a}{10} \le \frac{X 100}{10} \le \frac{a}{10}\right) = -1 + 2\Pi\left(\frac{a}{10}\right) = 0,99.$ On cherche donc a tel que $\Pi\left(\frac{a}{10}\right) = 0,995$, soit, en utilisant la table de la loi normale : $\frac{a}{10} \simeq 2,575 \iff a \simeq 25,75.$

Partie B:

- 1. On appelle Y la variable aléatoire correspondant au nombre de jours où le serveur connaît des dysfonctionnements importants au cours d'un mois de 30 jours.
 - (a) Y suit une loi binomiale de paramètres n = 30 et p = 0, 01.

(b)
$$P(Y \le 2) = P(Y = 0) + P(Y = 1) + P(Y = 2)$$

 $= C_{30}^{0} p^{0} (1 - p)^{30} + C_{30}^{1} p^{1} (1 - p)^{29} + C_{30}^{2} p^{2} (1 - p)^{28}$
 $= 0,99^{30} + 30 \times 0,01 \times 0,99^{29} + \frac{29 \times 28}{2} 0,01^{2} \times 0,99^{28}$
 $\approx 0,778$

- 2. (a) de même que la variable aléatoire Y, Z suit une loi binomiale, de paramètres n=365 et p=0,01.
 - (b) L'espérance mathématique de Z est np=3,65 et son écart type $\sigma=\sqrt{npq}$ soit $\sigma=\sqrt{365\times0,01\times0,99}\simeq1,90.$

Dans cette partie, on s'intéresse à la durée séparant deux requêtes successives reçues par le serveur. On appelle T la variable aléatoire qui prend pour valeurs les durées (exprimées en secondes) séparant l'arrivée de deux requêtes successives sur le serveur.

1. On désigne par t un nombre réel positif. La probabilité que T prenne une valeur inférieure ou égale à t est donnée par : $p(T \le t) = \int_0^t 500 \mathrm{e}^{-500x} \,\mathrm{d}x$.

(a)
$$P(T \le t) = \int_0^t 500e^{-500x} dx = \left[-e^{-500x} \right]_0^t = -e^{-500t} + 1$$

(b)
$$P(T \le t) = 0.95 \iff -e^{-500t} + 1 = 0.95 \iff t = \frac{-\ln 0.05}{500} \simeq 5.991 \, 10^{-3}.$$

2. (a)

$$I(t) = \int_0^t 500x \, e^{-500x} \, dx = \int_0^t u(x) \, v'(x) \, dx$$
 on intégre par parties avec,
$$\left\{ \begin{array}{l} u(x) = x \\ v'(x) = 500 e^{-500x} \end{array} \right. \iff \left\{ \begin{array}{l} u'(x) = 1 \\ v(x) = -e^{-500x} \end{array} \right.$$

$$I(t) = [u(x) v(x)]_0^t - \int_0^t u'(x) v(x) dx$$

$$= \left[-xe^{-500x} \right]_0^t - \int_0^t -e^{-500x} dx$$

$$= -te^{-500t} + \left[\frac{-1}{500} e^{-500x} \right]_0^t$$

$$= -te^{-500t} - \frac{1}{500} e^{-500t} + \frac{1}{500}$$

$$= \frac{1}{500} \left(-(500t + 1)e^{-500t} + 1 \right)$$

(b) Comme
$$\lim_{t \to +\infty} e^{-500t} = 0$$
 et $\lim_{t \to +\infty} t e^{-500t} = 0$, on a donc, $m = \lim_{t \to +\infty} I(t) = \frac{1}{500}$,

Exercice 2 10 points

Dans cet exercice, on étudie un système « entrée-sortie » dont la sortie est modélisée par la fonction v_s solution de l'équation différentielle :

$$\tau v_s'(t) + v_s(t) = v_e(t) \tag{1}$$

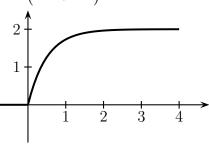
où $\tau > 0$ et v_e modélise l'état imposé en entrée du système.

Partie A:

Dans cette partie, on considère que $v_e(t) = 2$ pour tout réel t. L'équation différentielle s'écrit alors :

$$\tau v_s'(t) + v_s(t) = 2 \tag{2}$$

- 1. $h(t) = k \in \mathbb{R}$ est solution de (2) si et seulement si $\tau h' + h = 2 \iff 0 + k = 2 \iff k = 2$.
- 2. La solution de l'équation homogène $\tau y' + y = 0$ est $y(t) = Ke^{-t/\tau}$, $K \in \mathbb{R}$. La solution générale de l'équation différentielle est donc, $v_s(t) = 2 + Ke^{-t/\tau}$.
- 3. $v_s(0) = 0 \iff 2 + K = 1 \iff K = -1$, et donc, $v_s(t) = 2(1 e^{-t/\tau})$.
- 4. On considère dans cette question que $\tau = 0, 5$, et alors : $v_s(t) = 2 (1 e^{-2t})$. On a donc, pour tout $t \in \mathbb{R}$, $v_s'(t) = 4e^{-2t} > 0$ car $e^u > 0$ pour tout $u \in \mathbb{R}$. La fonction v_s est donc strictement croissante sur \mathbb{R}^+ .



On suppose que les fonctions v_s et v_e admettent des transformées de Laplace, que l'on notera respectivement V_s et V_e .

1.
$$pV_s(p) - v_s(0) + V_s(p) = V_e(p)$$
, or $v_s(0) = 0$, d'où, $V_s(p) (\tau p + 1) = V_e(p)$.

2. On en déduit la fonction de transfert :
$$H(p) = \frac{V_s(p)}{V_e(p)} = \frac{1}{\tau p + 1}$$
.

3.
$$H(j\omega) = h(s) = \frac{1}{1+js} = \frac{1-js}{1+s^2} = x(s) + jy(s)$$
 avec
$$\begin{cases} x(s) = \frac{1}{1+s^2} \\ y(s) = \frac{-s}{1+s^2} \end{cases}$$

Partie C:

1.
$$x(0) = 1$$
 et $y(0) = 0$.

Les fonctions x et y sont des fractions rationnelles, et donc, leur limite en $+\infty$ est égale à celle du rapport de leurs termes de plus haut degré :

$$\begin{cases} \lim_{s \to +\infty} x(s) = \lim_{s \to +\infty} \frac{1}{s^2} = 0\\ \lim_{s \to +\infty} y(s) = \lim_{s \to +\infty} \frac{-s}{s^2} = \lim_{s \to +\infty} \frac{-1}{s} = 0 \end{cases}$$

2.

$$\begin{cases} x'(s) = \frac{-2s}{(1+s^2)^2} \\ y'(s) = \frac{-(1+s^2)+2s^2}{(1+s^2)^2} = \frac{s^2-1}{(1+s^2)^2} \end{cases} ds$$

s	0	1	$+\infty$
x'(s)	0	_	0
x(s)	1	1/2	<u> </u>
y(s)	0 /	$-\frac{1}{2}$	0
y'(s)	-1	– 0	+ 0

3. Lorsque $s=0, \ x(0)=1$ et y(0)=0, d'où A(1;0). Lorsque $s=1, \ x(1)=\frac{1}{2}$ et $y(1)=-\frac{1}{2},$ d'où $B\left(\frac{1}{2};-\frac{1}{2}\right).$

En A, x'(0) = 0 et y'(0) = -1; ainsi, la tangente en A est verticale.

En $B, x'(1) \neq 0$ et y'(1) = 0; ainsi la tangente en B est horizontale.

