Dérivation des fonctions - Exercices

 $1^{\text{ère}}S$

Exercice 1 Des fonctions composées

f est la fonction définie sur IR par : $f(x) = x^3 + x^2 + 5x - 7$.

- 1. Dresser le tableau de variation de f.
- 2. Dresser le tableau de variation de la fonction g définie par : $g(x) = \sqrt{x^3 + x^2 + 5x 7}$.
- 3. Dresser le tableau de variation de la fonction h définie par : $h(x) = \frac{1}{x^3 + x^2 + 5x 7}$.
- 4. Dresser le tableau de variation de la fonction k définie par : $k(x) = (x^3 + x^2 + 5x 7)^2$.

Exercice 2 Comparaison de fonctions

Soit les fonctions f et g définies sur \mathbb{R} par les expressions :

$$f(x) = x^4 - 3x + 1$$
 et $g(x) = 2x^3 - 3x - 1$

Le but de l'exercice est de comparer ces deux fonctions.

- 1. On considère la fonction définie par d(x) = f(x) g(x). Déterminer l'expression de la fonction d.
- 2. Dresser le tableau de variation de la fonction d.
- 3. Quel est le minimum de la fonction d sur \mathbbm{R} ? En déduire le signe de d(x) pour tout x réel, et conclure.

Exercice 3 Comparer dans chaque cas les deux fonctions :

- 1. $f(x) = x^4$ et $g(x) = 2x^3 2x^2 10$
- 2. $f(x) = \frac{1}{1+x}$ et g(x) = 1-x
- 3. $f(x) = (1+x)^3$ et g(x) = x 5 (on pourra calculer f(-3) et g(-3)).

Exercice 4

- A. f est la fonction définie sur \mathbb{R} par : $f(x) = 4x^3 12x 1$.
 - 1. Etudier les variations de f et dresser son tableau de variation.
 - 2. Démontrer que l'équation f(x)=0 admet exactement trois solutions $\alpha,\,\beta$ et γ telles que :

$$-2 < \alpha < -1$$
 ; $-1 < \beta < 0$; $1 < \gamma < 2$

B. g est la fonction définie sur IR par : $g(x) = x^4 - 6x^2 - x - 1$. Etudier les variations de g et dresser son tableau de variation.

Exercice 5 Distance minimale sur une parabole

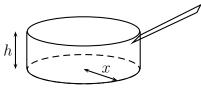
Dans un repère orthonormal d'origine O, \mathcal{P} est la parabole d'équation : $y = x^2 - 1$. On associe à tout nombre réel x le point M de \mathcal{P} d'abscisse x.

- 1. Faire une figure.
- 2. Montrer que $OM^2 = x^4 x^2 + 1$.
- 3. f est la fonction définie sur \mathbb{R} par $f(x) = x^4 x^2 + 1$. Dresser le tableau de variation de f.

4. Déterminer la position du point M sur \mathcal{P} pour laquelle la distance OM est minimale, et calculer cette distance.

Exercice 6 Des casseroles aux dimensions économiques

On peut remarquer que la hauteur d'une casserole semble être, approximativement, égale au rayon de son fond.



Le but de l'exercice est de répondre à la question suivante : $Comment\ fabriquer\ une\ casserole\ de\ volume\ V\ donné\ avec\ le\ moins\ de\ métal\ possible\ (en\ négligeant\ le\ manche\ de\ la\ casserole)$

L'unité est le cemtimètre. On note x le rayon du cercle du fond de la casserole, h sa hauteur, et S l'aire totale égale à l'aire latérale plus l'aire du fond.

1. Démontrer que
$$h = \frac{V}{\pi x^2}$$
, puis que $S = \pi x^2 + \frac{2V}{x}$.

2. Etudier sur $]0; +\infty[$ les variations de la fonction $x \mapsto \pi x^2 + \frac{2V}{x}$. Conclure.

Exercice 7 Etude d'une fonction à l'aide de sa dérivée seconde

On considère la fonction f définie sur \mathbb{R} par $f(x) = x^4 - 2x^3 + 2x^2 - 2x + 5$. On note f' la fonction dérivée de f et f'' la dérivée de f'. (f'' se lit "f seconde").

- 1. Calculer f''(x) et étudier son signe.
- 2. En déduire les variations de f'.
- 3. Calculer f'(1) et en déduire le signe de f'(x).
- 4. Etudier enfin les variations de f.

Exercice 8 Soit f la fonction définie sur $[0; +\infty[$ par : $f(x) = \frac{2x\sqrt{x}}{1+x}$.

- 1. Démontrer que la fonction f est dérivable en 0.
- 2. Calculer f'(x) pour tout x de $]0; +\infty[$.
- 3. a. Démontrer que l'équation f(x) = 3 admet une unique solution a dans $[0; +\infty[$.
 - b. Déterminer un encadrement à 10^{-2} près de a.

Exercice 9 Vrai ou faux. La proposition suivante est-elle vraie?

La fonction f définie sur R par $f(x) = ax^3 + bx^2 - ax + c$ ($a \neq 0$) n'admet aucun extremum.

Exercice 10 Quantificateurs

f est la fonction définie sur \mathbb{R}^* par : $f(x) = x + 3 + \frac{2}{x}$.

Réécrire les propositions suivantes en français. Sont-elles vraies ou fausses? (justifier).

- 1. $\exists x \in \mathbb{R} / f'(x) = 0$.
- 2. $\forall x \in \mathbb{R}^*, f'(x) \geqslant 0.$
- 3. $\exists I \subset \mathbb{R}$, f est décroissante sur I.
- 4. $\exists x_0 \in \mathbb{R}, f(x_0)$ est un maximum local de f.
- 5. $\exists x_0 \in \mathbb{R} / \forall x \in \mathbb{R}^*, f(x) \leqslant f(x_0).$
- 6. $\forall x \in \mathbb{R}, f(x) \leq 100.$